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A Landauer formula for the current through a region of interacting electrons is derived using the
nonequilibrium Keldysh formalism. The caso of proportionate coupling to the left and right leads, where
the formula takes an especially simple form. is studied in more detail. Two particular examples where
interactions give rise to novel effects in the current are discussed: In the Kondo regime, an enhanced
conductance is predicted, while a suppressed conductance is predicted for tunneling through a quantum
dot in the fractional quantum Hall regime.

PACS numbers 72.10.3g. 72.1S.Qm. 73.40.Gk. 73.30.1k

The formulation by Landauer [I( and Buttiker [21 of teracting. The formula we derive [Eq. (6)1 expresses the
the current through a finite, possibly disordered region of current, as in the noninteracting case, in terms of the Fer-
noninteracting electrons has tremendously enhanced the mi functions in the leads and local properties of the in-
understanding of transport in mesoecopic systems (31. teracting region. (b) We show how the noninteracting
The Landauer formula, which expresses the current in case and the results of Langreth and of Hershfield, Davis,
terms of local properties of the finite region (such as the and Wilkins follow as special cases. (c) The current will
transmission coefficient) and the distribution functions in be written in a particularly simple form for the case of a
connected reservoirs, has been used extensively and suc- constant asymmetry factor relating the coupling to the
ces•fully in many areas, including the scaling theory of left lead to the coupling to the right lead. This case will
localization 14,51. universal conductance fluctuations [61, be presented and investigated in some detail. (d) Two ex-
Aharonov-Bohm conductance oscillations 171, the integer ample. where the interactions lead to interesting results
quantum Hall effect 181 and its quenching [91. the quant- for the current will he discussed: transport in the Kondo
ization of ballistic conductance 1101, and recently in the regime, where an emhamed conductance has been predict-
field of quantum dynamics of driven systems (quantum ed [17), and tunneling through a correlated electronic
chaos) [Il]. state, such as the fractional quantum Hall state, where a

While both the derivation of the Landauer formula for suppression of the conductance is expected I 181.
noninteracting electrons [31 and its application are well Our starting point is the Hamiltonian
established, an apt formulation of the current when in- H-- 7 ek.4C.C*.+Hi(1d.1;1d,)
teractions between electrons are involved has been lack- A.& G L.R
ing. In view of the recent technological progress in + 1 (Vk.i.c1A.+H.c.), (1)
confinement of electrons into small regions, where the C.c L.n
electron-electron interactions plays a major role in the
transport [121, it is quite clear that a Landauer-type for- where CL (ca&) creates (destroys) an electron with
mula for the transport through such an interacting region momentum k in channel a in either the left (L) or the
is highly desirable. Several attempts have been made to right (R) lead, and W.1 and Ii.1 form a complete, ortho-
deal with special case 1131. Langreth [141 was able to normal set of single-electron creation and annihilation
express the linear conductance through a single site with operators in the interacting region. The channel index in-
an on-site interaction (the Anderson model) at zero tern- dudes spin and all other quantum numbers which, in ad-
perature in terms of phase shifts and thus relate the con- dition to k, are necessary to define uniquely a state in the
ductance to a scattering matrix. Apel and Rice [151 ap- leads. This Hamiltonian corresponds to an experimental
proximated the interaction in one dimension by the values situation (see, e.g., Refs. I101 and [121) where two metal-
of the momentum transfer Sq at Sfq -0 and Sq "2kf and lic, multichannel leads are connected to the
were able to derive a Landauer-like formula. Unfor- system under study (see Fig. I). Since the leads are me-
tunately, this approximation is unsuitable for electrons tallic, the interaction between electrons in the leads and
confined into a small region. More recently, Hershfield, the interaction between electrons in the intermediate re-
Davis, and Wilkins [161 have been able to derive a for- gion and electrons in the leads are strongly screened and
mula for the current in the Anderson model, can be neglected. However, in the presn c of barriers

In this Letter (a) we derive an exact formula for the between the leads and the interm€ediate regi--', electrons
current through a region of interacting cictrons coupled cannot flow freely to screen the interactions in the inter-
to two multichannel leads where the electrons are not in- mediate region. Accordingly, the interactions between

2512 0 1992 The American Physical Society
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(3)
P..

where G<()mi(d~d.(-)). and G'.. (,), to be used later.. m f ' Ca

is equal to -i(d.(l)d2). The Green functions with su-

FIG. I. Schematic diagram of the experimental configu- perscripts i and iare the time-ordered and the anti-time-
ration for which an interacting Landauer forniula for the ordered Green functions, respectively (221, and the Green
current is derived. Two leads. characterized by chemical poten- functions denoted with small g are the unperturbed Green
tials pt. and p. are connected to a mesoucopic region where functions (i.e.. in the uncoupled system). Using th',
electrons may interact. If pl. > pi. an electron current J will equalities (221 G '(w)+G <(o)"Gr(co))+G"(a) and
flow from left to right. G () -)G < (op) -G'(a) - G"(w), where G' (GO) are

the usual retarded (advanced) Green functions, and the

electrons in the intermediate region need to be treated relations
dynamically and are included in Eq. (I). This treatment &L. W(-)2xifW(w) -- cid).

is similar to the one leading to the Anderson model of a g 21 -fL) o-fe.)(4)

single magnetic impurity in a metal 1191.
The logic of our approach follows that used in Ref. where a e L we find

(201 for the one-dimensional noninteracting case. The . Le ())f
unperturbed system (taken to exist at t - - -. ) consists AL
of three uncoupled regions: a left lead and a right lead,
both described by the first term in (I). and an interact-
ing, intermediate region described by the second term in (5)
(I). Since the leads are not coupled at t - - a. each one where p.(e) is the density of states in channel a and
maintains its own thermal equilibrium and one can asso- V.,,(e) equals Va.,, for eme. An equivalent formula
ciate chemical potentials, IlL and pR, with the left and can be derived for the current between the intermediate
right leads, respectively. As the coupling turns on be- region and the right lead. Since, in steady state, the
tween the intermediate region and the two leads [the last current is uniform, one can symmetrize Eq. (5). and us-
term in (1)). then, if PL > pr. an electron current J starts ing matrix notation for the level indices in the interacting
to flow from the left lead to the right lead. After some region, we find
time the system achieves a steady state. Our aim is to re- "r dL,,o f,(P'T 'G)

late the steady state current to ML and pR, or equivalent- Jam-dL(trllfL(E)rfa(E)rI(G G)I
ly. to fL(e) and fi(e), the unperturbed Fermi-Dirac dis- +tr[(rL-rR)G 1), (6)
tribution functions in the leads. (We assume that the
reservoirs are large enough that the bulk JL and pi are where r...m2X,•,LP.(e)V.Y.()V:.(e), with rf..
not perturbed by the current J.) defined similarly. In equilibrium, fL(e) "[ft(e) --fq(e),

To this end we write the current between the inter- one has G < - -fq(G'-G') and the current vanishes.
mediate region and the left lead as Equation (6) is the central result of this work. It

expresses the current through the interacting region in
j-1 !e (V&.n(cIad,)- Vr.,,(dc1 ,)) terms of the distribution functions in the leads and local

"h" t.L properties of the intermediate region, such as the occupa-
tion and the density of states. (The local density of states

f, '. kWWis proportional to the diagonal part of G'-GO, while G <is a product of the density of states and the occupation

[231.) Note that these are to be calculated in the pres-
(2) ence of the leads.

For the noninteracting case one can write down Dyson

The first line in (2) can be easily checked by writing the equations for the Green functions in the intermediate re-
continuity equation for the current 1201, while to get the gion [201, G < "ift.(e)GTLG'+ifn(e)GT"G° and G'
second line we have used the definition of the Keldysh -G- -iG,(rL+rn)G', which enable us to rewrite
Green function 120,211, G.<.(t)ni(cZd1(t)). In the (6) as
Keldysh formalism, since the Hamiltonian describing the J-eLf df(e) _fi(w)tri{,GerGTI (7)
leads is noninteracting, one has the Dyson equations h
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Since the transmission coefficient from left to right is at zero temperature. At finite temperature. or at finit
given by t P.'P. VG¶,G,,, V.,,,, with a E R voltage, inelastic processes have to be taken into account
and a' E L, Eq. (7) reduces to and the usual Landauer formula (8) breaks down for ,in

J - ± fdf(f )_ (e) ] tritt +(01 (8) interacting system.
h(8 In order to demonstrate the new features of Eq. (9). we

which is the usual two-terminal Landauer formula for the now study two specific examples. The first is transport
noninteracting case 1241. through a quantum dot in the Coulomb blockade regime

The conductance formula. Eq. (6). takes an especially 1121. Recently. the Anderson Hamiltonian [191,
simple form (251 for the case that the couplings to the
leads differ only by a constant factor. r"L(E) " C)

J" f*def,(e)-f,(e)]tr{r(G'-G@) + (VcZA.+H.c.), (II)
h JA G L

"-2• fe derL(e)(-f(e)]lm~trlrG11, (9) has been employed 1261 to describe transport in this re-
n,- gime. Equation (11) is a special case of (I) where the

where rIrLrR/(rL+rR). While this innocent looking different channels are the two spin directions, and the in-
formula resembles the noninteracting one, it should be teracting region is a single site with an on-site Coulomb
emphasized that even though there is a single integral repulsion U. In this case the current takes-the form
over energy in (9), this formula includes, by means of the
full Green function G', inelastic processes, spin flips, and J .- L ifd~IE f(I.(1 Ii mG',(e)
even processes where several electrons are scattered. ' fde [ft (e-

In order to illustrate how the additional processes due
to interactions are reflected in the formula for the (12)
current, we use the usual definition of the self-energy V, where - (I/x) ImG;.(e) is just the local density of states
namely, we- (g') -t h (G') -u with io defined similarly, of electrons with spin a. In linear response, for tempera-

to write G'-G'-G'XGI, where Z-Z'-V. This al- tures larger than the Kondo temperature, the conduc-
lows us to rewrite Eq. (9) as tance will consequently exhibit resonant tunneling peaks

only at to and eo+U, which correspond to resonances in
"JM- 'f j ddf.L (e) -f (e)I tr (rG'ZGtl the density of states of the uncoupled site 1261. However,

Al below the Kondo temperature, the density of states devel.
M e_. de1fL(E)-fR(e)Jtr1G~rRGTLTi}J (10) ops a peak at the Fermi energy [271, for e < #u < o+U.

h 'Consequently. Eq. (12) predicts a greatly enhanced con-
where Io, the self-energy for the nonintcracting case, is ductance over this entire range, in agreement with earlier
equal to -i(rL+rR). Comparing Eq. (10) to the studies 1171. Equation (12), which has been indepen-
noninteracting results, Eqs. (7) and (8). we see that in dently derived by Hershfield, Davis, and Wilkins 1161 for
the presence of interactions the current cannot in general constant r. provides a framework to study the crossover
be recast in terms of the transmission matrix, and that from high to low temperatures, and to calculate the
the additional processes included in X are directly respon- current in a Kondo system out of equilibrium. Detailed
sible for the deviation of the exact formula for the in- studies will be presented elsewhere (28).
teracting case from the usual Landauer formula [Eq. A second example where nontrivial effects due to in-
(8)1. Note, however, that at zero temperature and in teractions appear in the conductance is the case of tunnel-
linear response only single-electron, elastic processes are ing through a quantum dot in a highly correlated state,
allowed by energy conservation. In this case ;(p) such as a fractional quantum Hall state. In the case
-Eo(M) and Eq. (10) reduces to the usual Landauer for- where the coupling to the leads is weak, i.e., the elastic
mula (8) (this is a generalization of the Langreth (141 re- broadening of the levels is smaller than the excitation en-
suit for the Anderson model). Thus the Landauer formu- ergy, the correlated eigenstates arc only weakly perturbed
la for the linear-response conductance holds not only for by the leads. When the temperature is larger than the
the noninteracting case, but also for the interacting case elastic broadening one can rewrite Eq. (9) for the linear-

I response conductance G in the form

G -- !--,. .,.° r...(Es -E,) (P,+Pj) -Ot (Ei -E,) (pJd.' ,d(wId.I 9,j). (13)

where the W, are eigenstates, with energies E,, of the uncoupled interacting region, and Pi is the equilibrium probability
of state W,. Hence, the conductance consists of thermally broadened resonant tunneling peaks which occur whenever the
chemical potential u suffices to add another electron to the interacting region. For noninteracting electrons, one can
choose the d's to correspond to single-particle eigenstates of the uncoupled system, and the overlap factor in each term,
(W, Jd.'l ,,)(w, Id.Iwj is trivially 0 or I. On the other hand, adding an electron in a single-particle state to a correlated
N-particle eigenstate- which cannot be written as a Slater determinant of single-particle states- will generally not pro-
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We discuss the effects of surfaces on bulk plasma oscillations in a metallic film of
thickness L. The leading corrections to the plasma frequencies due to the surfaces are
proportional to L-'. The frequencies of low-lying long wavelength modes are given
by the dispersion relation of bulk modes, w = wp[1 + a(q2/k1)), where the allowed
q-values are q(n) = (nr/T'), I =_ L - 2db, and db is a complex length characteristic of
the surface (reminiscent of but different from Feibelman's d±). An explicit expression
for db is derived. Resonant excitation by an external field, Eoe-'wt, is calculated.
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The widespread interest in nanostructures (thin films, layer structures. quarntum
wires, quantum dots etc.) as well as in atomic and molecular clusters, in which at
least one dimension is "mesos--opic" (10 A - 1000 A), has led us to re-examine the
effects of finite size on charge collective modes (plasmons). In an infinite system.
these modes have frequencies given by the bulk plasmon relation [11

La(q) = wp + a L p W(19

where w, is the classical plasma frequency, w2 = 47re 2n/m, with n the electron den-
sity, kF the Fermi wavevector, and a a (complex) number. The imaginary part of
a describes the damping of bulk plasmons, which in an infinite system is due to ex-
citations of multiple electron-hole pairs. In a finite system, we expect the following
qualitative changes in the plasmon spectrum due to the presence of surfaces. First,
only a discrete set of frequencies will be allowed. Second, there will be additional
damping due to the decay of plasmons into (single) electron-hole pairs. In this Let-
ter, we will show how both the real and imaginary parts of the allowed frequencies
are completely determined by a single (complex) length. Specifically, we consider a
thin slab with a positive jellium charge background, n+ = NT between z = 0 and z = L
and infinite in the x and y directions, and a neutralizing electron liquid described by
the equilibrium density distribution n_(z) (See Fig. I). We shall discuss bulk-like
collective modes of the form

n(r, t) = n(z)e-i-)t, (2)

where the eigenfrequencies W(") are near the classical bulk plasma frequency associated
with the density 7F, w -= (47re2W/m)'/ 2.

This problem has been previously addressed experimentally [2,3] and theoretically
[4] for modes of the form (2) and of the more general form

n(r, t) = n(z)ei(PX -D0. (3)

In the present Letter, limited to the case p = 0, we derive the following new result:
the (complex) eigenfrequencies w("}, near w,, are determined by the bulk plasmon
dispersion Eq. (1) for small q, and by an effective, complex, slab thickness

S=- L - 2db, (4)

where d4, precisely defined below, is an effective, complex, surface thickness. The
thickness db is reminiscent of the parameter dj. introduced by Lang and Kohn [5] for
W = 0 and generalized for arbitrary w by Feibelman [6] but is not the same quantity.
The allowed (complex) interior wavenumbers, q("), are given by

q (")T =nr" (n =1,2,...) (5

and the corresponding (complex) eigenfrequencies are given by Eq. (1):
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We now derive the above-stated results. We take the equilibrium electron density,
n_(z), to vanish for z < -c and z > L + c, and introduce an auxiliary thickness
(71 a, large compared to the surface thickness but much smaller than L. We then
distinguish two surface regions, -c < z < a and L - a < z < L + c, and the bulk
region a < z < L - a, in which n_(z) = ff (see Fig. 1).

We consider a collective mode of frequency w, with self-consistent electric field,
E(z), parallel to z. This field induces a current density,

L+e

j(z) = dz'a(z,z')E(z'), (7)

where a(z, z') = f dx'd y 'ao,,(z - - y'; z, z'); a,, is the zz-component of the non-
local conductivity tensor. (For ease of notation, the time dependence, e-t, and the
functional dependence of fields, currents etc. on w will generally not be explicitly
written out.) The quantity a(z, z') is short-ranged in the difference variable (z - z');
also, when both z and z' are in the bulk region,

(zz') = a(z - z'), a < z,z' < L- a (8)

equal to the bulk conductivity correrponding to W" and w. Of course a(z, z') vanishes
when either z or z are outside the slab (-c, L + c), as do E(z) (due to charge
neutrality) and j(z).

Denoting the induced charge density by n(z), the continuity equation and Gauss'
law are

iwen(z) + -jz = 0 (9)

and

dE(z) - 4ren(z) (10)
dz

(where e has been taken as positive). Since at z = -c both j(z) and E(z) vanish, (9)
and (10) imply that, for all z,

j(z) = i-E(z). (1

41r

We can eliminate j(z) from (7) and (11) which results in the integral equation

i,, [ L+ o
:FE~) = dz'o.(z, z')E(z'). (2-E(z) = d'(12)

We are looking for solutions, which, in the bulk, behave as e*iqz, with q <. kF.
In this limit of long wavelengths in the bulk, we can, with Eq. (8) in Eq. (12) obtain
the frequencies of these solutions by expanding E(z') about z when z and z' are in
the bulk. The result is
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where

ao(j) = Jdz'a(z - z'; w)= ip- (14)

a, (W) = I dz'(z' - z) 2a(z - z'; W). (15)

Equation (13) is the bulk plasmon dispersion relation of an infinite system of conduc-
tivity a(z - z'). In the limit L > a, the frequencies of the lowest-lying eigenmodes
of Eq. (12) are very near wp and the shape of E(z) in the surface region tends to the
limiting shape

E(z) --+ E(z) - E(z;,w,) (16)

shown schematically in Fig. 2. We arbitrarily take E(a) = 1 and write, near z = a

Cz) = - (17)
a - db

where d4 is the, as yet undetermined, point where E(z) extrapolates to 0. When z is
in the bulk the solution which joins (17) near z = a is

1
E(z) - 1 sin q(z - db). (18)q( a -- rib)

ThuE, db plays the role of a (complex) scattering length.
The length d6 can be simply expressed in terms of the limiting surface density

distribution, i(z), associated with collective modes with q -- 0 and W -4 wp. From
Eq. (10) and the form of E(z) in the surface region we see that •i(z) has the general
form shown in Fig. 2. Thus, for z near a, we have

E(z) P [~ d ,z,(f)zdfi(z/)1
-S"dz(z) dz -('('))- -

(-4re) -c -o [dz'd j

C dz'
Z d--z7 - dz'z- ' (19)

Z 1  d' Jc dz'

The upper limits oo are to be understood as > kF? but < L. The linear form of
E(z) near a, Eq. (19), extrapolates to 3ero when z equals

"fb dz z"'W (20)
f_: dz du
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Thus, db is the center of mass of the function dýi(z)/dz.
The eigenmodes are either even or odd about L/2 so that, by Eq. (18), the

allowed values of q are

q(n)T = nir, (n = 1,2,...) (21)

where "E is give by Eq. (4). The corresponding frequencies are given by Eq. (1).
Using the notation d6 = d'6 + idg' etc, we have

W =W(('p•+ k2 -4a"n t (22)

I(~= (," + 4a=db)(), (23)

where T = L - 2db. We observe that the real parts Eq. (22) of the frequencies
correspond to bulk plasmon modes with the boundary conditions E(4) = E(L-,d') =
0. The imaginary parts, (23), have contributions from the bulk (oc a") and from the
surface (cc (da''/T)).

We have solved the integral equation (12) in the discrete form

N-ZEn = b F, O.n En, (
4nE (24)

where b = LIN is the interval length. We have chosen L = 35.4 A, N = 248, b = 0.14
A, and c = 0. For the sake of illustration, we have chosen the following values for
Oamn. In the "bulk", 4 _ m < 125, we have chosen

=r"n :p(w) = W-, [a2 - i*1], amom+2 = =,m-2 =,4irwb 37rkb 2
_ _p 1.

m =m+ .+1,÷m = i, = 21rk•b 3 C [C2 - /•a 1 , m,..+3 = O.nm-3 = VL, (25)

and symmetrically for m > 125, with kF = 1.75 x 10s cm-', hwp = 15 eV, and
a = 0.57 + iA.025 in Eq. (1) (appropriate [1) for Al in the limit of q/kF < 1). The
functions p(w) and v are chosen so that the average and second moment of am,, are
oro(w) and a2 (wp). In the "surface", 0 < m < 3, we have chosen

aOn = Ono = 0m .
O',m, = T (ip(w) + E)4

a'.=,++ 1 = O1,+i. = (iv + f)

am,.+2 = 0am+2,m = 7 (iv + C)

om,m+3 = O"m+3,m = T' (iv + ,) (26)
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and symmetrically near the other surfaces. The small real part f =,,a"/(6kb3 )
was added" to the conductivity in the surface regions as a simple model of damping
in the surfaces due to decay into electron-hole pairs. Apart from this small real
part, equation (26) is a simple interpolation between no,, = a,,o = 0 and the bulk
conductivity. The results for the lowest three modes are plotted in Figs. 3 and 4, and
confirm our conclusions, Eqs. (5), (6), (22) and (23).

How do our results relate to charge density waves in classical Maxwell theory?
"Classical" here means a local a(z, z')

i W2
od...(Z, z') = aoot(z - z') = 4- b(z - Z'), (27)

so that (12) becomes
iEw z iw_
E(z)= 4- E(z). (28)

4v 4rw

The boundary conditions [8] are, from charge neutrality, E(0) = E(L) = 0. Thus,
classically the general solution is w = wp and E(z) = F(z), an arbitrary function of z
satisfying the boundary conditions E(0) = E(L) = 0. In particular, the functions

N" nr
Fl(z)=sin(q (z) q~• -.- , n = 0,1,... (29)

iD('•) _wp, all n, (30)

are solutions. Thus, our non-local and translationally non-invariant o(z, z') leads to:
(1) replacement of L by the complex TL = L - 2db; (2) a finite dispersion of w(');
and, if a(z, z') is known in detail in the surface region, the detailed field and density
distributions in the surface region.

We now turn to resonant response to a uniform external field, Eoe-i'. Eqs. (7),
(9) and (10) remain unchanged, but in Eq. (11) E(z) is replaced by E(z) - Eo and
Eq. (12) becomes

iw jL+c
j- [E(z) - Lol -- dz'a(z, z';w )E(z'). (31)

Near w = wp we can write this as

al ,'_r(z z- P ++-LZ(z) - )' E(z') +I, IE(z)- jdz, %(z') "4
47 47r Ez 47r

(32)

where o'(z, z') =_ a(z, z'; w,), r(z, z') - [da(z, z';w)/dw1_., and q W - Wp. On the
right-hand side, r7 can be neglected. - O

Setting E0 = 0, for a moment, gives us the equation for the slightly complex
normal modes, E,(z), and eigenvalues, j7,, = 17' + iri. The kernels oa(z, z')/i, r(z, z')/i
are symmetric and (slightly) complex. The En(z) satisfy the orthonormality relations
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_C-' dzdz'E,(:) [6( - i 1 E-() (33)

We now substitute the Ansatz

E(z) = • A.En(z) (34)

into (32), giving

A.q- qj,~E,,(z) = ý'o (3-5)
n4

Using the orthonormality relation Eq. (33) leads to

An p•, - 4• : ,,) - dz i-+ dz'E,,(z') 6(z - z') ('(z') (36)

Only even modes, n - 2,4... are excited. A well defined resonance occurs for q - j7,,
if 41Z < It" - r'?n*2, In this case as single term in (34) is dominant, giving

E.,(z) = Lo w4 [(07- i,)l+ (37)

In order to resolve the discrete modes experimentally, the spacing between the modes
must be larger than the width. From Eqs. (22) and (23) we find that the spacing
and width are given by

( I- --) a' (1)2 -4)
77n• 17n•, k 2 (4n - )(38)

,7n = - n. (39)

Thus, as n increases, the width gains on the spacing. For a film of width L' = 30 A,
db = db' = 1 A, and ci' = 0.57, a" = 0.025 (Al), the highest well defined resonance is
n 20.

We plan to address the considerably more complex theory of modes with finite
wavevector p (Eq. 3) in the near future.

We thank Professor G.C. Strinati for discussions. Support by the Office of Naval
Research, Grant No. ONR-N00014-89-J-1530 and the National Science Foundation
Grant No. NSF-DMR-90-01502 and NSF Science and Technology Center for Quan-
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FIGURES

FIG. 1. Positive background density, n+(z) (dashed line), and equilibrium electron
density, n_(z) (dotted line).

FIG. 2. The limiting (w -- Wp) form, E(z), and mode density h(z) in the surface
regions. The mode density i(z) approaches the constant value no in the bulk.

FIG. 3. (a) The real part of the electric field of the three lowest bulk-like eigenmodes
near the surface. In the surface, the fields all approach the limiting form k(z). Insert The
real parts of the three lowest bulk-like eigenmodes for 0 < z < L/2. In the bulk region, the
fields are sinusoidal. The vertical dashed line marks the position of a.

FIG. 4. (a) Real and (b) imaginary parts of the plasmon eigenfrequencies. The straight
lines are the dispersions Eqs. (22) and (23) with L' = 34.8 A and db" = 6 x 10-2 A obtained
from Eq. (20).
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